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PRESSURE GRADIENTS DUE TO FRICTION DURING 

THE FLOW OF EVAPORATING TWO-PHASE MIXTURES 

IN SMOOTH TUBES AND CHANNELS 
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National Engineering Laboratory. East Kilbride. Glasgow. Scotland 

(Received 9 March 1912 and in revised form 3 1 May 1972) 

Abstract-The graphical procedure of Baroczy and equations for predicting local pressure gradients 
during the turbulent flow of two-phase mixtures in smooth tubes are transformed to enable their more con- 
venient application to the case of evaporating flow. The resulting equations also prove to be convenient 
for use in predicting local pressure gradients. Limited comparison is made with data for flow in channels. 

NOMENCLATURE 

tube cross-section ; 
coefficient in equations (24) and (26) ; 
coefficient in equation (11) ; 
coefficient in Blasius’ equation (14) : 
coefficient defined by equation (15) ; 
defined by equation (28) : 
tube diameter ; 
mass velocity : 
velocity ratio, equation (8): 
length ; 
length over which evaporation 
occurs ; 
mass flowrate : 
exponent in Blasius’ equation (14) ; 
pressure gradient if gas flows alone ; 
pressure gradient due to friction if 
total mixture flows as gas; 
pressure gradient due to friction if 
liquid flows alone; 
pressure gradient due to friction if 
total liquid flows as liquid ; 
pressure gradient during two-phase 
flow ; 
dryness fraction ; 
dryness fraction at end of evaporating 
length ; 

Reynolds number ; 
vapour velocity ; 
liquid velocity : 
Lockhart-Martinelli parameter, equa- 
tion (9); 
ratio of gas to total cross-section; 
physical property coefficient, equa- 
tion (18): 
friction factor ; 
friction factor when all of mixture 
flows as gas; 
friction factor when all of mixture 
flows as liquid ; 
friction factor when mixture flows; 
absolute viscosity of gas ; 
absolute viscosity of liquid ; 
density of gas ; 
density of liquid ; 
the Lockhart-Martinelli two-phase 
multiplier, ApTP/ApLo ; 
group given by equation (29). 

1. INTRODUCTION 

THE PREDICTION of pressure gradients during 
the flow of two-phase mixtures is an essential 
step in the design of a great variety of industrial 
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plant in the power and process industries. 
Despite the considerable progress made in 
recent years [l-3] in this field, a considerable 
need exists for convenient, rapid, and accurate 
estimation procedures. 

This is particularly the case in relation to 
evaporating flow where most existing prediction 
procedures require the pressure drop due to 
friction to be evaluated by arithmetic integra- 
tion. In this paper equations for the prediction 
of local friction pressure gradients during the 
turbulent flow of two-phase mixtures are deve- 
loped in a form which permits their ready 
integration to give the overall pressure drop 
during evaporation. 

2. AN ELEMENTARY MODEL 

One elementary model [4] expresses the 
frictional resistance during two-phase flow 
through pipes in terms of the “true dynamic 
head” of the mixture as follows : 

ApTP = 2 {aU& + (1 - 4 UtpL). (1) 

It can be seen that at the all-liquid and all-gas 
(or all-vapour) conditions this reduces to the 
normal expression for single-phase flow. 

The continuity equations for the vapour and 
liquid are respectively 

(1 -q)M=(l -a)AU,p, (2) 

qM = aAU,p,. (3) 

If the components flowed alone their friction 
pressure gradients would be, where the friction 
factor is independent of Reynolds number, 

AP,> = 
A(1 - q)’ M2, 

2dp,A2 ’ 

Iq2 M2 
Ape = ___ 

2dp,A2’ 
(5) 

Combining equations (lH5), assuming I, = I, 
gives 

APT, qZPr. + (1 - d2 _-_=- 
APL0 apG l-a' (6) 

From equations (2) and (3) 

1 *-qpc p=l+K-- (7) 
a q PL 

where the velocity ratio K is 

3. LOCKHART-MARTlNELLl PARAMETER 

Lockhart and Martinelli [5] correlated a 
considerable amount of data by plotting 
Ap,,/Apr to a base of the parameter 

p3!5 
APG 

(9) 

From equations (4), (5) and (9), where J is 
independent of Reynolds number, 

x2= 1-Y 2PG 

( >-. 
(10) 

4 PL 

Combining equations (6) (7) and (10) gives 

APTP -= 

APT. 
(11) 

where 

c = ;J(;t) + q(z). (12) 

Equations (11) and (12) have been developed 
previously [6, 71 by the writer for situations 
other than considered here. 

While the model is too crude to warrant much 
expectation of close agreement with experiment, 
nevertheless the empirical curve of Lockhart 
and Martinelli closely approximates to equa- 
tion (11) with C = 21, as can be seen in Fig. 1 
taken from a paper by Chisholm and Laird [8]. 
The data were obtained with smooth tubes in 
which case 
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FIG. 1. ApprelAppL to a base of Lockhart-Martinelli parameter 
X: airjwater mixtures in a 27 mm bore horizontal tube at 

atmospheric pressure. 

where n is the exponent in the Blasius relation 
for friction factor 

(14) 

Equation (13) reduces to equation (10) when 
n = 0; it has not yet proved possible to derive 
equation (11) except where n = 0. 

Chisholm [9] and Sutherland [lo] present 
values of C and C, defined by 

c, = c/{@)+ &)I w 
for a range of conditions. Comparison of 
equations (12) and (15) indicates that for 
homogeneous flow (K = 1) the coefficient C, 
is unity. For flow of steam/water mixtures in 
tubes of commercial roughness Thorn [ll] 
recommended 

C = I-I{d(;;) +/(:)I - 02 (16) 

and later [12] 

C=l+ 9lPo 

(9/k) + (1 - 4)/k - a. (17) 

Use of equations (16) and (17) will give predicted 
values slightly in excess of homogeneous theory. 

4. PHYSICAL PROPERTY COEFFICIENT 

Baroczy [ 131 introduced a “physical property 
index” 

PC PL o.2 
PLk . C--J 

There are a number of advantages [ 141 however 
in defming a physical property coefficient 

The pressure gradients are those 
mixture flows as vapour or liquid 

(18) 

if the whole 

and 

A,G2 
A - PLO = UP, (19) 

&G2 
A - 

poo= 2dpo (20) 

where G is the mass velocity of the mixture. 
For turbulent flow in smooth tubes 

and in rough tubes (n = 0) where 

From equations ( 13) and (2 1) 

(22) 

X =(+)(2+/y (23) 

5. PROPOSED EQUATIONS 

Equation (11) is in rather an unsatisfactory 
form for use with evaporating flows as ApL, in 
that case, varies along the flow path More 
convenient forms of this equation for use with 
evaporating flow are now presented. 
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The writer has already shown [14] that for 
n = 0 from equations (9H12), (15) and (22) 

APTP ~ = 1 + (r* - 1) (Bq(1 - q) + q*} 
APL0 

(24) 

where 

B=CT-2 
r* - 1 

(25) 

From equation (25) it is apparent that, where 
T* 9 1, B i C,. From equations (12) and (15) 
it follows that B is unity for homogeneous flow 
(K = 1). 

It should be noted that, regardless of the value 
of B, equation (28) satisfies the following 
important boundary conditions : 

4 = 0 APTP = APL0 

4 = 1 APT = APT 
r* = 1 Ap,, = ApLo 

= APaY 

Equations (26) and (27), of course, reduce to 
equations (24) and (25) when n = 0. As C is 
independent of dryness fraction q, so also is B. 

The precise transformation of equation (11) 
contains a further term D on the right-hand 
side of equation (26). The term D is 

D = (1 _ q)*-” + (22-n _ 2)q(*-“)/* 

x (1 - q)‘*-w + q*-” - 1. (28) 

With n = 0.25, D has a maximum value [ 151 of 
about 0.025 as shown in Table 1 and can there- 
fore be neglected in engineering calculations. 

6. GRAPHlCAL PRESENTATlON OF 
TWO-PHASE FLOW DATA 

The form of equation (26) suggests that a 
useful method of presenting data for two-phase 
flow is by plotting the group 

(APTPIAPLCJ - 1 = $ 
r* - i 

1 (29) 

Table 1. The term D as a function of the dryness fraction q (n = 0.25) 

Dryness 
fraction 0900 0.010 0.050 0.200 0.500 0.800 1900 

4 

D oaoo 0.023 0.015 0.011 omo 0.011 0000 

Earlier [ 141 the writer had been unsuccessful in 
transforming equation (11) to the general form 
of equation (24) in the case of smooth tubes. The 
required transformation of equation (11) has 
now been obtained and is approximately 

AP,, _ = 1 + (r* _ 1) {Bq(*-W (1 _ q)(*-W 
APT 

where + q*-“3, (26) 

B = cr - 22-n + 2 

r*-1 . 
(27) 

to a base of q; for convenience the group has 
been designated I++~. It has been shown in [ 141 
that the family of curves in the well-known 
correlation of Chenoweth and Martin [16] 
reduces to a single curve in this type of plot. 
For homogeneous flow in rough tubes as B = 1 
equation (26) can be expressed 

(AP~IAPLO) - 1 
r* - 1 

= q. (30) 

Thus the proposed graphical plot is identical to 
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G PRESSURE r 
‘UN Km k,/,‘, MN/m' 

2 A 2131 590 0 645 I, I 

0 4//11 bO2 0 635 I3 2 

X 2/I2 bO3 I 03 10 4 

0 2/154 595 I 03 IO 4 

DRYNESS FRACTION-q 

(a) Pressure range 0.6 to 1.0 MN/m’ 

I- 
10 

0 RUN No C PRESSURE /- 

kp/m’, MN/m* 

0 I/54 b12 I95 76 

X l/96 bS0 200 76 

A 2/w 520 2.00 7 b 

(b) Pressure approximately 2 MN/m’ 

EOUATlON 26. B=J 5 n=02 

F 
c 

RUN NO G PRESSURE r 

kq/m’s MN/m’ 
0 !/I79 bO0 2 98 b*S _ 

v 2/100 540 3.02 b.1 

0 2/w b40 3 02 b.1 

x 2/w 568 1 98 5 4 

0 l/178 584 400 54 

(c) Pressure range 34 MN/m* 

FIG. 2. The group +I to a base of q: steam/water mixtures 

in vertical tubes with G + 600 kg/m%. 

that used in a paper by James [17] ; when theory against the actual dryness fraction. This 
correlating data for steam/water flow through is in fact plotting 11/r against q. 
nozzles, he plotted the dryness fraction that Figure 2 presents, in the manner discussed 
made experiment agree with homogeneous above, some of the data of Becker, Hernborg 
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and Bode [ 181 for steam/water flow in vertical 
tubes. As B is a function of both the mass 
velocity and the physical properties of the 
mixture, the data in the three parts of Fig. 2 are 
for a mass velocity of about 600 kg/m2s, and 
each corresponds to a particular range of 
pressure. Figure 2 also shows the curves of $r 
obtained from equation (26) with the arbitrary 
values of B given on the figures. Methods of 
obtained the values of B will now be examined. 

7. VALUES OF THE COEFFKIENT B 

Using the Baroczy [ 131 correlation as a basis, 
Chisholm and Sutherland [lo] obtained a 
graphical plot of C (equation (11)) as a function 
of r and G. This has been transformed to the 
plot of B as a function of r and G shown in 
Fig. 3: the points associated with the curves 
corresponding to mass velocities of 339 and 
4029 kg/m2s were evaluated from the figures in 

FIG. 3. The coefficient B to a base of r : based on Barocq [13] 
correlation. 

Table 4.2 of [lo]. Figure 4 is a cross-plot of 
Fig. 3 and presents B as a function of G. 

From Fig. 4 it can be seen that B tends to 
vary as l/G*. The lines of constant r have been 
extrapolated on this basis to give values of B at 
G = 1; these values at G = 1 are also plotted 
in Fig. 3. From this curve, values of B at other 
mass velocities can be obtained by dividing by 
Gi. The error in this approach can be assessed 
from Fig. 4: the error is the difference between 

the lines and points at corresponding values of 
r. The largest error occurs at G = 4068 kg/m2s 
and low r values; at r = 2 the predicted value 
will be almost twice the value of B obtained 
directly from the curve at this mass velocity in 
Fig. 3, but elsewhere the agreement is con- 
siderably more satisfactory. 

The curve of B for G = 1 can be approximated 
by three straight lines as indicated in Fig. 3. 
This then leads to the following formulas for I? 
which will approximate the graphs of Baroczy. 
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For 

0 < 9.5 B = 55/G* (31) 

9-5 < r < 28 B = 520/(rG*) (32) 

28 < r B = 150t10/(r2G*). (33) 

In these equations the mass velocity must have 
the units kg/m%. 

It should be noted that : 

(a) for G > 1900 kg/m’s and r < 9.5, equation 
(31) gives values smaller than from the 
writer’s correlation [9], which is trans- 
formed into terms of R in Appendix I : and 

(b) Chisholm and Laird’s approximation to the 
Lockhart-Martinelli curve (equation (1 l), 
C = 21) corresponds, as shown in Appendix 
I, to B i 21/r. The Lockhart-Martinelli 
correlation was developed within the region 
9-5 < r < 28 ; combining equations (32) and 
(43) (with C = 21) indicates that the Baroczy 
procedure will give values smaller than the 
Lockhart-Martinelli procedure when G > 
600 kg/m2s. 

The writer therefore recommends that B should 
be evaluated as shown in Table 2. This is a 
compromise between the correlations of 
Baroczy, Lockhart-Martinelli, and Chisholm 

such that the greatest estimate of pressure 
gradient will be obtained ; in engineering design 
this is normally to be preferred. It is of interest 

Table 2. Values of B for smooth tubes 

l- G (kg/m’s) B 

<500 4-8 
g9-5 5OO<G<l900 2400/G 

>I900 55/G0+ 

9.5 < r < 28 
-<600 520/(rG“+) 
>600 21/T* 

>28 
15000 

i?F 

* This B corresponds to Lockhart-Martinelli curve (see 
Appendix I). 

at this point to compare these recommendations 
with those of Sher and Green [19] for steam/ 
water flow in vertical channels at a pressure of 
13.8 MN/m’. They presented $$ as a function 
of the mass velocity of the mixture and the 
dryness fraction as shown in Table 3 ; the writer 
has added values of B obtained using the 
tabulated values of +zo and equation (26) taking 
n = O-2. It can be seen that B, as anticipated, is 
essentially independent of dryness fraction but 
a strong function of the mixture mass velocity. 
Values are shown in the table only in the regions 
where data existed. 

Table 3. Values of *$i and B for steamiwtm mixtures at 14 MN/m’ (Sher and Green [ 193) 

Mixture mass 

velocity G 
(kg/m%) 

950 1080 1356 2030 2710 6770 

Dryness 
fraction & B 

4 
*~pLo 

& B *PW B *p, B 

*PM, Apt.0 *PLO 

& B BP, 

*~pLo *\p,_o B 

000 1.00 1GO Ia0 140 1.00 1TKl 

001 1.23 3-14 1.20 2.72 1.16 2.18 1.10 1.34 I.07 095 I.05 0.685 
003 1.65 3-26 1.55 2.76 1.46 2-30 1.31 1.54 1.24 l-18 1.13 0615 
007 2.37 3.30 2.14 2.72 l-92 2.18 1.59 1.37 I.47 1.07 
010 2.87 3-35 2.56 2.76 2.23 2.15 1.78 1.3 1 1.61 1XJO 
o-20 4.31 3.37 3.80 2.80 3.11 2.05 2.30 1.15 
v30 5.59 3.51 4.83 2.86 3.84 2.00 
040 6.85 3.84 5.80 3.00 4.49 2.01 
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It is relevant that the use of a constant value 
of B gives closer agreement with the data than 
the empirical curve of Sher and Green, as can 
be shown with reference to Fig. 5, which 
compares their empirical curve with their data 
at a mass velocity of 950 kg/m2s. At a dryness 

7- II II1 
G*9SO kg/m’s 

17 11 
5- NOMINAL CHANNEL DIMENSION>/ 

0 69Omm 1 25mm x2 5mm 

$,_--DEVIATIONS 
OF *lo% 

. 
/ 

of+@+ 

, 

/ 
4’ 

y+ 

L2- 
,’ 

c 
rrc 

c@ 
CR 

d 

4 
0, 

Q * 

P)“o/= 
,,““; , , , * L It 

13 5 7io 20 30 50 70 100 
EXIT DRYNESS FRACTION - qe 

Rc;. 5. fi’!?K to a base of q: steam/water mixtures in a 
Apt.0 

vertical channel at a pressure of 134 MN/m’ (Sher and 
Green [ 191). 

fraction of 0.4 Sher and Green’s value for #& is 
685, whereas taking B = 3.3 gives #& = 6-2, 
which is in closer agreement with experiment: 
for dryness fractions below @3 the use of B = 3.3 
gives Cpto values indiscernible from Sher and 
Green’s empirical curve. 

Figure 6 compares the various methods of 
estimating B at a value of I’ corresponding to 
steam/water mixtures at a pressure of 13-S 

‘\ 
1 

0 TABLE 3 X 

X FIGURE 3 

- TABLE 2 

-*- EQUATlON 31 

---*- RFFERENCI 9 

FIG. 6. Comparison of values of B from different sources: F 
corresponding to steam/water mixtures at 13.8 MN/m2 

(r = 2.39). 

MN/m2 (r = 2.39). The values corresponding 
to Sher and Green’s correlation are slightly in 
excess of the values obtained by the recom- 
mendations of Table 2 at lower values of the 
mass velocity but are in excellent agreement at 
higher values; arithmetic mean values of B 
from Table 3 have been used. 

Figure 7 compares the values of B corres- 
ponding to the curves in Fig. 2 with Baroczy’s 
curve from Fig. 3 and with the equations from 

b- I , f ,IL,,, 
0 CORRE*POND,NC TO 

TABLE 2 

\ 

CURVES ,N FiC,URE 2 

______-__ a -w.““-‘, 

9 00 
0 I 

r _ 
f 

I 

t: 
c 

\ 

I I I Ilillll 
5 10 10 

THE PROPERTY COE'F,ClfNT .r 

FIG. 7. The coefficient B to a base of r for G = 600 kg/m%. 

Table 2, all corresponding to G = 600 kg/m2s. 
One unsatisfactory aspect of the proposed 
procedures is the discontinuity at r = 9.5. 
Further work is required to overcome this and 
other shortcomings of the present generalized 
approach. One step which should improve the 
accuracy of correlation is the development of 
procedures which acknowledge that the fric- 
tional pressure gradient is influenced by the 
inclination of the tube. The correlation of 
Baroczy, where r < 9.5, has been developed 
using vertical tube data, whereas for F > 9-S 
the data were obtained on horizontal tubes. 

8. PRESSURE DROP DUE TO FRlCTlON 
OVER EVAPORATING LENGTH 

Where the change in pressure along a tube is 
sufficiently small in relation to the absolute 
pressure that r can be assumed constant, it is 
possible in certain cases to integrate equation 
(26) to give the contribution to the overall 
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pressure drop due to friction. For the case where 
the dryness fraction varies linearly along the 
length 

4 1 -=- 
40 lo’ 

(34) 

It follows from equation (26) that the average 
two-phase multiplier is 

1 P 

APLJO o 
.j Ap,dl=l 

q(2”-“)/2 (1 _ q)‘2-“)/2 dq 

The expression 

40 

$ s q(2-n)/2 (1 _ q)(2-“)/2 dq 

0 

can be evaluated using a series expansion as 
shown in Appendix II. Values for this expression 
are given in Table 4. 

911 

1 able 4. Values of $ 
s 

q’2 -@‘2 (1 - q)‘Z -@‘Z dq 

0 

n 

\\ 

0.25 0.20 

40 

0.10 

0.01 0.009 43 0.008 29 0+06 42 
0.02 0.017 20 0.015 38 0.012 32 
0.03 0.024 38 0.022 02 0.017 99 
0.04 0.031 17 0.028 36 0.023 49 
0.05 0,031 67 0.034 46 0.028 85 
0.06 0.043 93 0.040 36 0.034 08 
0.07 0.049 91 0.046 08 0.039 19 
0.08 0.055 82 0.051 64 0.044 21 
0.09 0.061 51 0.057 06 oXI 12 
0.1 0.067 04 0.062 34 0.053 92 
0.2 0.115 40 0.108 95 0.097 14 
0.3 0.153 66 0.146 21 0.132 42 
0.4 0.183 48 0.175 40 0.160 36 
0.5 0.205 62 0.197 11 0.181 22 
0.6 0.220 37 0.211 59 0.195 13 
0.7 0.227 88 0.218 93 0.202 13 
0.8 O-228 17 0.219 15 0.202 23 
0.9 0.221 01 0.212 09 0.195 36 
1.0 0.205 62 0.197 11 0.181 22 
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Figure 8 compares equation (39, using B 
values evaluated from Table 2, with the experi- 
mental data from [20] for the flow of steam/ 
water mixtures in vertical channels. As in the 

: J , , Iy ,“:“:‘T’, 1 

0.01 0.02 0.04 O.Ob o.o* 040 

EXIT DRYNESS FRACTION q. 

(a) Pressures of 1.03 and 2.75 MN/m2 

10 0 

10 I 1 I11111. 

001 0.02 0,04 006 008 0.10 

EXIT DRYNlSS FRACTION- q. 

(b) Pressures 01 I ,72 and 4.13 MN/m* 

Ft&. 8. The average two-phase multiplier to a base of exit 
dryness fraction q. at a mass velocity of 815 kg/m% for 

steam/water mixtures in vertical channels. 

case of the Becker data the recommended 
procedure tends to slightly over-estimate the 
value of the two-phase multiplier. The least 
satisfactory agreement is obtained at 1.72 MN/ 
m2 (r = 7.85); this is associated with the 
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discontinuities in the recommended procedures 
at r = 9-5. 

It is important to note that, while the pro- 
cedures developed for smooth tubes give satis- 
factory agreement with the data for channels 
examined in this paper, these procedures con- 
siderably underestimate the data of Petrick [2 I] 
water flow in horizontal tubes where the mass 
velocity is below 700 kg/m%. 

9. CONCLUSlONS 

It has been shown that the equation for 
predicting pressure gradients during two-phase 
flow, 

APTP - = 
APL 

t+;+;, (11) 

can be transformed with sufficient accuracy for 
engineering purposes to 

APTP ~ = 1 + (j-2 - 1) { Bqew( 1 - (#2 -fol2 

+ q2-“} (26) 

where B is defined in terms of C in equation (27). 
A method of graphical presentation of two- 

phase flow data suggested by the form of the 
latter equation has been discussed; for rough 
tubes this is essentially the procedure used by 

James [ 171. 
The values of B corresponding to Baroczy’s 

correlation are given in Fig. 3 and approxi- 
mated by equations (3lM33). There is evidence 
that the Baroczy correlation may underestimate 
the prediction of friction in certain situations, 
and for this reason the values of B in Table 2 
are recommended. 

Where the dryness fraction varies linearly 
along the tube, the pressure drop due to friction 
can be evaluated using equation (35). 
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APPENDIX I 

Approximate Equations for B 

For the flow of steam/water mixtures in tubes at pressures 

above 3 MN/m’ Chisholm [93 recommended the following 

equations for the evaluation of C with smooth tubes with 

mixture mass velocities less than 2000 kg/m%. 

c = q!!!{(!s)“’ +(!!)“3. (36) 

A more complex equation was also given which ensured 

that C approached the correct value at the critical point. 

Equation (36) was primarily based on the data in [22]; the 

pressure range was from 4 to 7 MN!m’. 

Combining equations (27) and (36) gives, taking II = Q2, 

(37) 

At the upper limit of pressure in the Berkowitz data F* = 15, 

hence equation (37) can be. approximated to 
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and, in this pressure range, less than 5 per cent error is 

introduced by making the further approximation 

Hence combining equation (39) with equation (21), and 

taking n = O-2 

W) 

Over the range of conditions for which equation (36) was 

derived, (pJ&“‘i varied between I.174 and 1.214: this 

equation can therefore bc finally approximated to 

B.7. (41) 

It was recommended previously that, where 2000/G > 4, 

the value of B should be made equal to 4. Hence if B > 4-8 

it should be taken as 4.8. 

B = C/l-. (42) 

Equations (31) and (41) give identical values of B at 1900, 

so for convenience the range of applicability of equation 

(41) will be taken as G > 1900, rather than G > 2ooOa.s in [9]. 

If the same approximations are made as in deriving 

equation (41), the relationship between B and C is 

APPENDIX II 

Evaluation of ‘(q’* ~“i’* (1 - q)‘-n”2 dq) 
il 

The integral can be evaluated using a series expansion as 

follows 

1 q’z-“‘/2(l _ q)‘Z-“‘/Zdq zqi ,$“(l _ #“dq 

_ 9t+’ NT+’ m(m - llrtJ 
m+l m+2 +2!(m+3) ’ 

_ m(m-l)(m-2)c+,+,,, 
3!(m + 4) ’ 

(43) 

For values of 9,, up to 05 the use of four terms in the series 

gives an accuracy of 002 per cent with n = 025. For 90 

between 05 and 1 a similar accuracy is obtained using the 

equation 

7 q”‘(l - #“dq = 02056 - ‘r q-(1 - 9)“dq. (44) 

GRADIENTS DE PRESSION DUS AU FROTTEMENT LORS DE L’ECOULEMENT 
DE MELANGES BIPHASIQUES EN EVAPORATION DANS DES TUBES ET DES 

CANAUX LISSES 

R&x& La methode graphique de Baroczy et les equations pour evaluer lcs gradients locaux de pression 
pour un &coulement turbulent d’un melange biphasique dans des tubes lisses ont en? transform&es atin de 
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permettre leur application convenable au cas de l’ecoulement avec evaporation. Les equations qui resultent 
sont utilisables pour estimer les gradients locaux de pression. On a fait une comparaison limit&e avec des 

resultats experimentaux sur I’ecoulement dans des canaux. 

DRUCKGRADIENTEN INFOLGE VON REIBUNG BE1 ZWEI-PHASEN-STRijMUNGEN 
MIT VERDAMPFUNG IN GLATTEN ROHREN UND KAN#LEN 

Zusammenfassung-Das graphische Verfahren von Baroczy und die Gleichungen zur Bestimmung 
lokaler Druckgradienten bei turbulenter Stromung von Zwei-Phasen-Gemischen in glatten Rohren 
wurden transformiert, urn sie auf Verdampfungsstriimungen anzuwenden. 

Die resultierenden Gleichungen sind such zur Bestimmung lokaler Druckgradienten geeignet. 
Em beschrlnkter Vergleich mit den Daten fur Kanalstromungen wurde durchgefiihrt. 

I’PAAHEHTbI AABJIEHMR B PE3YJIbTATE TPEHHH IIPB TEYEHMM 
MCHAPfIIOIIHIXCfI ABYXQA3HbIX CMECEH B PJIiZAKMX TPYEAX II 

HAHAJIAX 

AHHOTaqlrsr-rpB~ClqeCK~~ MeTOR hpOW H J’paBHeHRH @In PaCYeTa JIOKWIbHbIX rpaJ(GieHTOB 

;laBJIeHIIH IIpll TYPfiYJIeHTHOM Tt?qt?HIlll JJBJ’X@a3HbIX CMeCeii B rJIaRKHX TpJ’6aX CWl(HaJIbHO 

IIpeOfipa3OBaHbI JIJIH IIpllMt?HeHklR K pacqery Teqerr&i npa ucnaperinu. Houa:~auo, ‘iro 
IIOJIyWHHbI‘? ypaI,HeHMR IIpEIMeHElMbI TaKHie ;ZJIR paCW!Ta JIOKaJIbHbIX rpa,!(&ieHTOn JWUIeHItfI. 

n,,OBeReHO CpaBHeHIle HeKOTOPbIX RaHHbIX AJIR Te’leHHFl H KaHaJlaX. 


