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PRESSURE GRADIENTS DUE TO FRICTION DURING
THE FLOW OF EVAPORATING TWO-PHASE MIXTURES
IN SMOOTH TUBES AND CHANNELS

D. CHISHOLM
National Engineering Laboratory. East Kilbride. Glasgow, Scotland

(Received 9 March 1972 and in revised form 31 May 1972)

Abstract— The graphical procedure of Baroczy and equations for predicting local pressure gradients
during the turbulent flow of two-phase mixtures in smooth tubes are transformed to enable their more con-
venient application to the case of evaporating flow. The resulting equations also prove to be convenient
for use in predicting local pressure gradients. Limited comparison is made with data for flow in channels.
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NOMENCLATURE

tube cross-section ;

coefficient in equations (24) and (26);
coefficient in equation (11);
coefficient in Blasius’ equation (14);
coefficient defined by equation (15);
defined by equation (28):

tube diameter ;

mass velocity ;

velocity ratio, equation (8):

length ;
length
occurs;
mass flowrate;

exponent in Blasius’ equation (14);
pressure gradient if gas flows alone;
pressure gradient due to friction if
total mixture flows as gas;

pressure gradient due to friction if
liquid flows alone;

pressure gradient due to friction if
total liquid flows as liquid ;

pressure gradient during two-phase
flow;

dryness fraction ;

dryness fraction at end of evaporating
length ;

over which evaporation

Reynolds number ;

vapour velocity ;

liquid velocity;

Lockhart—Martinelli parameter,equa-
tion (9);

ratio of gas to total cross-section;
physical property coefficient, equa-
tion (18):

friction factor;

friction factor when all of mixture
flows as gas;

friction factor when all of mixture
flows as liquid ;

friction factor when mixture flows ;
absolute viscosity of gas;

absolute viscosity of liquid ;

density of gas;

density of liquid;

the Lockhart-Martinelli two-phase
multiplier, App/Apio;

group given by equation (29).

1. INTRODUCTION

THE PREDICTION of pressure gradients during

the flow of two-phase mixtures is an essential

step in the design of a great variety of industrial
347
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plant in the power and process industries.
Despite the considerable progress made in
recent years [1-3] in this field, a considerable
need exists for convenient, rapid, and accurate
estimation procedures.

This is particularly the case in relation to
evaporating flow where most existing prediction
procedures require the pressure drop due to
friction to be evaluated by arithmetic integra-
tion. In this paper equations for the prediction
of local friction pressure gradients during the
turbulent flow of two-phase mixtures are deve-
loped in a form which permits their ready
integration to give the overall pressure drop
during evaporation.

2. AN ELEMENTARY MODEL

One elementary model [4] expresses the
frictional resistance during two-phase flow
through pipes in terms of the “true dynamic
head” of the mixture as follows:

;
Apre = 3 {oaUGpe + (1 = ) Uipe}. (1)

It can be seen that at the all-liquid and all-gas
(or all-vapour) conditions this reduces to the
normal expression for single-phase flow.

The continuity equations for the vapour and
liquid are respectively

(1—gM=(1—-0)AU.p. 2

gM = aAUgpe. (3)

If the components flowed alone their friction
pressure gradients would be, where the friction
factor is independent of Reynolds number,

Ml — q)2 M?
. Sl 4
Ap, deLA2 4
AgiM?
Ap, = —. 5
P6 = 2dp A2 ©)

Combining equations (1)5), assuming 4, = 4,
gives
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Aprp _ q’p. (1 — 9 6
Apo 1~ o ()
Do *Pg &
From equations (2) and (3)
1 1 -
o1+ kAP (7)
o q po
where the velocity ratio K is
Ug
K==
U, ®

3. LOCKHART-MARTINELLI PARAMETER

Lockhart and Martinelli [S] correlated a
considerable amount of data by plotting
Ap1e/Ap, to a base of the parameter

_ Ap,

X% ="k
Apg

(9

From equations (4), (5) and (9), where 1 is
independent of Reynolds number,

1 — g\ pg
X*= (—") Ps. (10)
q P
Combining equations (6), (7) and (10) gives
Aprp C 1
=14 -+ — 11
Ap, tyt e (11)
where
1
C=- ("i>+K PaY (1)
K Pa P,

Equations (11) and (12) have been developed
previously [6, 7] by the writer for situations
other than considered here.

While the model is too crude to warrant much
expectation of close agreement with experiment,
nevertheless the empirical curve of Lockhart
and Martinelli closely approximates to equa-
tion (11) with C = 21, as can be seen in Fig. 1
taken from a paper by Chisholm and Laird [8].
The data were obtained with smooth tubes in
which case

e-(77) 20
q AV A

(13)
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FIG. 1. Aprp/Ap, to a base of Lockhart—Martinelli parameter
X : air/water mixtures in a 27 mm bore horizontal tube at
atmospheric pressure.

where n is the exponent in the Blasius relation
for friction factor

S

izRe"'

(14)
Equation (13) reduces to equation (10) when
n = 0; it has not yet proved possible to derive
equation (11) except where n = 0.

Chisholm [9] and Sutherland [10] present
values of C and C, defined by

=) G e

for a range of conditions. Comparison of
equations (12) and (15) indicates that for
homogeneous flow (K = 1) the coefficient C,
is unity. For flow of steam/water mixtures in
tubes of commercial roughness Thom [11]
recommended

c- (2) () v

and later [12]
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_1 q/pc _
(a/pc) + (1 — g)/p.

Use of equations (16) and (17) will give predicted
values slightly in excess of homogeneous theory.

a (17)

4. PHYSICAL PROPERTY COEFFICIENT
Baroczy [13] introduced a “physical property

index”
Po(m\?
L\ UG

There are a number of advantages [14] however
in defining a physical property coefficient

I = é&&)o-s_
Apo

The pressure gradients are those if the whole
mixture flows as vapour or liquid,

(18)

= (19)
Pro 2dp,
and
AgoG”
Apco = 20
PGo 2pg (20)
where G is the mass velocity of the mixture.
For turbulent flow in smooth tubes
0-5 n/2
T e
Pc .
and in rough tubes (n = 0) where
0-5
r= ( ”':) . 22)
Po
From equations (13) and (21)
1 __ (2—m)/2
X = ( T") / r 23)

5. PROPOSED EQUATIONS

Equation (11) is in rather an unsatisfactory
form for use with evaporating flows as Ap,, in
that case, varies along the flow path. More
convenient forms of this equation for use with
evaporating flow are now presented.
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The writer has already shown [14] that for
n = 0 from equations (9)+12), (15) and (22)

A
PIE — 1+ (1 = ) {Bq(l - g) + ¢*} (24)
Apio
where

_Cr-2
=
_ Cz(rz + 1) -2
SN (25)

From equation (25) it is apparent that, where
I'’ » 1, B = C,. From equations (12) and (15)
it follows that B is unity for homogeneous flow
(K=1.

It should be noted that, regardless of the value
of B, equation (28) satisfies the following
important boundary conditions:

gq=0 Aprp = Ap,

Equations (26) and (27), of course, reduce to
equations (24) and (25) when n=0. As C is
independent of dryness fraction g, so also is B.

The precise transformation of equation (11)
contains a further term D on the right-hand
side of equation (26). The term D is

D=(1—-g"+Q2"—2q2™""

X (1 — g ™24 g2 " _ 1. (28)

With n = 025, D has a maximum value [15] of
about 0-025 as shown in Table 1 and can there-
fore be neglected in engineering calculations.

6. GRAPHICAL PRESENTATION OF
TWO-PHASE FLOW DATA
The form of equation (26) suggests that a
useful method of presenting data for two-phase
flow is by plotting the group

(21 =1 Apmp = Apgo
I'*=1 App=Ap, (Apre/Apio) — 1
= Apgo- T2 -1 =¥ (29)
Table 1. The term D as a function of the dryness fraction q (n = 0-25)

Dryness o

fraction  0-000 0-010 0-050 0-200 0-500 0-800 1-000
q
D 0-000 0023 0015 0011 0-000

0011 0-000

Earlier [14] the writer had been unsuccessful in
transforming equation (11) to the general form
of equation (24) in the case of smooth tubes. The
required transformation of equation (11) has
now been obtained and is approximately

A
APT" =1+ (' — 1){Bg@ ™2(1 — gy@ "2
PLo
2~n
where +4°7",  (26)
cr —22"+2
B = —___L (27)

rr-1

to a base of g; for convenience the group has
been designated /,. It has been shown in [14]
that the family of curves in the well-known
correlation of Chenoweth and Martin [16]
reduces to a single curve in this type of plot.
For homogeneous flow in rough tubes as B = 1
equation (26) can be expressed

(Apre/Apio) — 1 =g

rr—i (30)

Thus the proposed graphical plot is identical to
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F1G. 2. The group y, to a base of ¢: steam/water mixtures
in vertical tubes with G = 600 kg/m?s.

that used in a paper by James [17]; when
correlating data for steam/water flow through
nozzles, he plotted the dryness fraction that
made experiment agree with homogeneous

[Re]
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theory against the actual dryness fraction. This
is in fact plotting i, against g.

Figure 2 presents, in the manner discussed
above, some of the data of Becker, Hernborg
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and Bode [18] for steam/water flow in vertical
tubes. As B is a function of both the mass
velocity and the physical properties of the
mixture, the data in the three parts of Fig. 2 are
for a mass velocity of about 600 kg/m?s, and
each corresponds to a particular range of
pressure. Figure 2 also shows the curves of ¥,
obtained from equation (26) with the arbitrary
values of B given on the figures. Methods of
obtained the values of B will now be examined.

7. VALUES OF THE COEFFICIENT B

Using the Baroczy [13] correlation as a basis,
Chisholm and Sutherland [10] obtained a
graphical plot of C (equation (11)) as a function
of I and G. This has been transformed to the
plot of B as a function of I' and G shown in
Fig. 3: the points associated with the curves
corresponding to mass velocities of 339 and
4029 kg/m?s were evaluated from the figures in
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FiG. 3. The coefficient Btoa basc of I': based on Baroczy [13]
correlation.

Table 42 of [10]. Figure 4 is a cross-plot of
Fig. 3 and presents B as a function of G.

From Fig. 4 it can be seen that B tends to
vary as 1/G*. The lines of constant I have been
extrapolated on this basis to give values of B at
G = 1: these values at G = 1 are also plotted
in Fig. 3. From this curve, values of B at other
mass velocities can be obtained by dividing by
G*. The error in this approach can be assessed
from Fig. 4: the error is the difference between

10 T T TTTIT T

3
=

//'
7
O® O XD
3"
(444l

g

T I/IIT1
<
s /o
1 1

/

THE COEFFICIENT &

o xu . 3
- ~ - 50
" u]
- \ b
o [u] .
r E
- D 00,

a

001 b1 L b rugel L4t 11t

00 1000 10000
MASS  VELOCITY G igfm?s

F1G. 4. The coeflicient B to a base of mass velocity of mixture.

the lines and points at corresponding values of
I'. The largest error occurs at G = 4068 kg/m?s
and low I values; at I' = 2 the predicted value
will be almost twice the value of B obtained
directly from the curve at this mass velocity in
Fig. 3, but elsewhere the agreement is con-
siderably more satisfactory.

The curve of Bfor G = 1 can be approximated
by three straight lines as indicated in Fig. 3.
This then leads to the following formulas for B
which will approximate the graphs of Baroczy.
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For
0<95 B = 55/G* (31)
95 < I <28 B=520/I'G?) (32)
28<r B = 15000/(I"*G?). (33)

In these equations the mass velocity must have
the units kg/m?s.
It should be noted that:

(a) for G > 1900 kg/m?s and I" < 9-5, equation
(31) gives values smaller than from the
writer’s correlation [9], which is trans-
formed into terms of B in Appendix I; and

(b) Chisholm and Laird’s approximation to the
Lockhart—Martinelli curve (equation (11),
C = 21) corresponds, as shown in Appendix
I, to B=21/I. The Lockhart-Martinelli
correlation was developed within the region
9-5 < I' < 28 ; combining equations (32) and
(43) (with C = 21) indicates that the Baroczy
procedure will give values smaller than the
Lockhart-Martinelli procedure when G >
600 kg/m?s.

The writer therefore recommends that B should
be evaluated as shown in Table 2. This is a
compromise between the correlations of
Baroczy, Lockhart—Martinelli, and Chisholm
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such that the greatest estimate of pressure
gradient will be obtained ; in engineering design
this is normally to be preferred. It is of interest

Table 2. Values of B for smooth tubes

r G (kg/m?s) B
<500 4-8
<95 500 < G < 1900 2400/G
>1900 55/G%3
<600 520G )
93<I<28 > 600 21T+
>28 15000
> righs

* This B corresponds to Lockhart-Martinelli curve (see
Appendix I).
at this point to compare these recommendations
with those of Sher and Green [19] for steam/
water flow in vertical channels at a pressure of
13-8 MN/m?. They presented ¢, as a function
of the mass velocity of the mixture and the
dryness fraction as shown in Table 3; the writer
has added values of B obtained using the
tabulated values of ¢7, and equation (26) taking
n = 0-2. It can be seen that B, as anticipated, is
essentially independent of dryness fraction but
a strong function of the mixture mass velocity.
Values are shown in the table only in the regions
where data existed.

A
Table 3. Values of A—pTI and B for steam/water mixtures at 14 MN/m?* (Sher and Green [19])
Pro

Mixture mass

velocity G 950 1080 1356 2030 2710 6770
(kg/m?s)
Dryness Ap A A A A A
fraction TP Prp Prp APrp Prep Pre B
q Apo Apio Apio Apio Apio Apio
0-00 1-00 1-00 1-00 1-00 1-00 1-00
001 1-23 314 120 272 1-16 218 1-10 134 1-07 095 1-05 0-685
003 1-65 326 1-55 2-76 1-46 2-30 1-31 1-54 1-24 1-18 1-13 0-615
007 2:37 330 214 272 192 218 1-59 1-37 1-47 1-07
010 2-87 335 2-56 276 223 2-15 1-78 1-31 1-61 1-00
020 431 337 3-80 2-80 311 2:05 2-30 1-15
030 5-59 351 4-83 2-86 384 2:00
685 384 5-80 300 449 201

040
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It is relevant that the use of a constant value
of B gives closer agreement with the data than
the empirical curve of Sher and Green, as can
be shown with reference to Fig. 5, which
compares their empirical curve with their data
at a mass velocity of 950 kg/m?%s. At a dryness

T a— Y T
G =950 kg/mis /,déo

7 T
Sk NOMINAL CHANNEL DIMENSIONS 20O,

O 690mm * 25mm * 2 Smm ,’ }3
sh= == DEVIATIONS J
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:2 7
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<
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i l k. i i i i i
! 2 3 o) S 20 30 50 70 100
EXIT  DRYNESS FRACTION - ¢

A . .
FiG. 5. —5313 to a base of ¢: steam/water mixtures in a
Lo

vertical channel at a pressure of 13-8 MN/m? (Sher and
Green [19]).

fraction of 0-4 Sher and Green'’s value for ¢, is
685, whereas taking B = 3-3 gives ¢ig = 62,
which is in closer agreement with experiment:
for dryness fractions below 03 the use of B = 3-3
gives ¢}, values indiscernible from Sher and
Green’s empirical curve.

Figure 6 compares the various methods of
estimating B at a value of I' corresponding to
steam/water mixtures at a pressure of 13-8

o) TABLE 3 X
X FIGURE 3

TABLE 2

EQUATION 31

REFERENCE 9

THE COEFFICIENT &

ot L
10Q 1000
MASS VELOCITY G kqfm’s

0000

Fi1G. 6. Comparison of values of B from different sources: I”
corresponding to steam/water mixtures at 138 MN/m?
(I =23%.
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MN/m? (I' = 2:39). The values corresponding
to Sher and Green’s correlation are slightly in
excess of the values obtained by the recom-
mendations of Table 2 at lower values of the
mass velocity but are in excellent agreement at
higher values; arithmetic mean values of B
from Table 3 have been used.

Figure 7 compares the values of B corres-
ponding to the curves in Fig. 2 with Baroczy’s
curve from Fig. 3 and with the equations from

4 T T ™ T T T T T7T
O CORRESPONDING TO

TABLE 2 CURVES N FIGURE 2

_________ P

-

THE COEFFICIENT &

P33 !
i M 1o 0

COEFFICIENT 7
FiG. 7. The coefficient B to a base of I for G = 600 kg/m®s.

1 H 3 i i i

THE PROPERTY

Table 2, all corresponding to G = 600 kg/m?s.
One unsatisfactory aspect of the proposed
procedures is the discontinuity at I’ = 9-5.
Further work is required to overcome this and
other shortcomings of the present generalized
approach. One step which should improve the
accuracy of correlation is the development of
procedures which acknowledge that the fric-
tional pressure gradient is influenced by the
inclination of the tube. The correlation of
Baroczy, where I' < 9-5, has been developed
using vertical tube data, whereas for I' > 95
the data were obtained on horizontal tubes.

8. PRESSURE DROP DUE TO FRICTION
OVER EVAPORATING LENGTH
Where the change in pressure along a tube is
sufficiently small in relation to the absolute
pressure that I' can be assumed constant, it is
possible in certain cases to integrate equation
(26) to give the contribution to the overall
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pressure drop due to friction. For the case where
the dryness fraction varies linearly along the
length

- =— (34)
9o ly

It follows from equation (26) that the average
two-phase multiplier is

1 fo
— | Appdl=1
Aproly J Pre

qu

EJ‘q(Zn—n)/Z (1 _ q)(z—n)/z dq

9o
0]
2-n
+ B } (35)
3—n

+(F2—1){

The expression

40

1 -n -n
_J q(2 )/2(1 _ q)(l )/2 dq
9o /

can be evaluated using a series expansion as
shown in Appendix I1. Values for this expression
are given in Table 4.

4o

Table 4. Values of qi fq” (] — )2 TWi24q
0

0

0-25 020 0-10

9o

0-01 0-009 43 0-008 29 0-006 42
002 0017 20 0015 38 0012 32
0-03 0024 38 0022 02 0017 99
0-04 0031 17 0028 36 0023 49
005 0037 67 0034 46 0-028 85
006 0-043 93 0-040 36 0034 08
0-07 0049 97 0-046 08 0039 19
0-08 0055 82 0051 64 0044 21
0-09 0-061 51 0057 06 0049 12
01 0-067 04 0-062 34 0053 92
02 0115 40 0-108 95 0097 14
03 0-153 66 0-146 21 0132 42
04 0-183 48 0175 40 0-160 36
05 0205 62 0197 11 0-181 22
06 0220 37 0211 59 0195 13
07 0-227 88 0-218 93 0202 13
0-8 0228 17 0219 15 0202 23
09 0221 01 0212 09 0-195 36
1-0 0-205 62 0197 11 0-181 22

Figure § compares equation (35), using B
values evaluated from Table 2, with the experi-
mental data from [20] for the flow of steam/
water mixtures in vertical channels. As in the

MULTIPLIER

TWO - PHASE

O 103 MN/m?
X 2:75 MNIm?

AVERAGE

1 11
0-:0b 0-08 OO0

[le) 1 1 1 1
[eNel] 002 004

EXIT DRYNESS
(a) Pressures of 1-03 and 275 MN/m?

FRACTION ¢,

>
[e]

TWO - PHASE MULTIPLIER

~
(o]

S ’/x
: r O 1172 MN/m?
3 x X X 413 MN/m?
<
[Rel 1 1 i1 1 |
o0l 002 004 006 O08 010

EXIT DRYNESS FRACTION-qo
(b) Pressures of 1-72 and 4:13 MN/m?
F1G. 8. The average two-phase multiplier to a base of exit

dryness fraction g, at a mass velocity of 815 kg/m?s for
steam/water mixtures in vertical channels.

case of the Becker data the recommended
procedure tends to slightly over-estimate the
value of the two-phase multiplier. The least
satisfactory agreement is obtained at 1:72 MN/
m? (I = 7:85); this is associated with the
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discontinuities in the recommended procedures
atI' =95,

It is important to note that, while the pro-
cedures developed for smooth tubes give satis-
factory agreement with the data for channels
examined in this paper, these procedures con-
siderably underestimate the data of Petrick [21]
water flow in horizontal tubes where the mass
velocity is below 700 kg/m?s.

9. CONCLUSIONS
It has been shown that the equation for
predicting pressure gradients during two-phase
flow,

A
Pre _ 1+ g
Ap, X

+ (11)

P,

can be transformed with sufficient accuracy for
engineering purposes to

A
APTP =1+ (I'* — 1){Bg® (1 — g ™2
Pro

+ g% " (26)
where B is defined in terms of C in equation (27).

A method of graphical presentation of two-
phase flow data suggested by the form of the
latter equation has been discussed; for rough
tubes this is essentially the procedure used by
James {17].

The values of B corresponding to Baroczy’s
correlation are given in Fig 3 and approxi-
mated by equations (31}433). There is evidence
that the Baroczy correlation may underestimate
the prediction of friction in certain situations,
and for this reason the values of B in Table 2
are recommended.

Where the dryness fraction varies linearly
along the tube, the pressure drop due to friction
can be evaluated using equation (35).
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APPENDIX 1

Approximate Equations for B
For the flow of steam/water mixtures in tubes at pressures
above 3 MN/m? Chisholm [9] recommended the following
equations for the evaluation of C with smooth tubes with
mixture mass velocities less than 2000 kg/m?s.

S G

A more complex equation was also given which ensured
that C approached the correct value at the critical point.
Equation (36) was primarily based on the data in [22]; the
pressure range was from 4 to 7 MN/m?

Combining equations (27) and (36) gives, taking n = (-2,

ORI R

(37

(36)

At the upper limit of pressure in the Berkowitz data I'> = 15,
hence equation (37) can be approximated to

Y A A T
G P U r r

(38)
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and, in this pressure range, less than 5 per cent error is
introduced by making the further approximation

2000 051
Bz () -
G \pg r

Hence combining equation (39) with equation (21), and

taking n = 0-2
2000 o1
B#;;(ﬂ)_
G \yg

Over the range of conditions for which equation (36) was
derived, (. /ug)®! varied between 1-174 and 1-214: this
equation can therefore be finally approximated to
2400
B=——
G

39

(40)

(41)

It was recommended previously that, where 2000/G > 4,
the value of B should be made equal to 4. Hence if B > 4-8
it should be taken as 4-8.

Equations (31) and (41) give identical values of B at 1900,
so for convenience the range of applicability of equation
(41) will be taken as G > 1900, rather than G > 2000 as in [9].

If the same approximations are made as in deriving
equation (41), the relationship between B and C is

B=Crr. 42)

APPENDIX II
d0
Evaluation of | q2 ™2 (1 — q)® "2 dq)
0

The integral can be evaluated using a series expansion as
follows

4o _ 40
-£ g2 (1 — g ™2 dg = [ g™(1 — g)"dg
0

_ q)(v)|+1 _mq:(l)n+2 "l(m_l)q,.+3
m+l m+2 2m+3)°
mm — )(m -2} __ .
ST Simid ot @)

For values of g up to (-5 the use of four terms in the series
gives an accuracy of (-02 per cent with n = 0-25. For g,
between 0-5 and 1 a similar accuracy is obtained using the
equation

i g1 - grda. (a4)

L]

90
[ g1 — g)"dg = 02056 —
V]

GRADIENTS DE PRESSION DUS AU FROTTEMENT LORS DE L’ECOULEMENT
DE MELANGES BIPHASIQUES EN EVAPORATION DANS DES TUBES ET DES
CANAUX LISSES

Résumé— La méthode graphique de Baroczy et les équations pour évaluer les gradients locaux de pression
pour un écoulement turbulent d’un mélange biphasique dans des tubes lisses ont été transformées afin de
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permettre leur application convenable au cas de I'écoulement avec évaporation. Les équations qui résultent
sont utilisables pour estimer les gradients locaux de pression. On a fait une comparaison limitée avec des
résultats expérimentaux sur I’écoulement dans des canaux.

DRUCKGRADIENTEN INFOLGE YON REIBUNG BEI ZWEI-PHASEN::STR@MUNGEN
MIT VERDAMPFUNG IN GLATTEN ROHREN UND KANALEN

Zusammenfassung—Das graphische Verfahren von Baroczy und die Gleichungen zur Bestimmung
lokaler Druckgradienten bei turbulenter Strémung von Zwei-Phasen-Gemischen in glatten Rohren
wurden transformiert, um sie auf Verdampfungsstromungen anzuwenden.
Die resultierenden Gleichungen sind auch zur Bestimmung lokaler Druckgradienten geeignet.
Ein beschriinkter Vergleich mit den Daten fiir Kanalstrémungen wurde durchgefiihrt.

I'PAJJMEHTHI JABJEHUA B PE3VJIbTATE TPEHUA IIP1 TEYEHNN
UCMAPAIIUXCA JBYX®A3HBIX CMECEN B INIAJTKUX TPYBAX U
HAHAJAX

Anxoragua—Ipaduyeckuit meroq Bapoun u ypaBHeHNA A pacueTa MOKAIBHBEIX IPAIMeHTOB

AaByieHHA Tpu TypOYJeHTHOM TedeHUU ABYX(asHbIX cMeceil B riagkux Tpy0ax CIeNHaJbHO

npeofpasoBaHbl 1A INPUMEHEHWA K pacdeTy TeueHuil npu wucnapenuu. [loxasano, uro

MOJIyYeHHbIe YPABHEHUA IPUMEHNUMBl TAKKe JJIA pacueTa JOKAIbHBIX I'DATUEHTOR [AABJICHHUS .
TIpoBesieHO CpaBHEHME HEKOTOPHIX NAHHLIX [JIA TEYEHHMHA B KaHajax.



